

Fluorouracil enhances azidothymidine cytotoxicity: *in vitro*, *in vivo* and biochemical studies. *Cancer Res* 1990, **50**, 4026-4031.

18. Anzano MM, Rieman D, Prichett W, Bowen-Pope DB, Greig R. Growth factor production by human colon carcinoma cells lines. *Cancer Res* 1989, **49**, 2898-2904.
19. Mickley LA, Bates SE, Richert ND *et al.* Modulation of the expression of a multidrug resistance gene (MDR-1/P-glycoprotein) by differentiating agents. *J Biol Chem* 1989, **264**, 18031-18040.
20. Leith JT, Heyman P, DeWynngaert JK, Dexter DL, Calabresi P, Glicksman AS. Thermal survival characteristics of cell subpopulations isolated from a heterogeneous human colon tumor. *Cancer Res* 1983, **43**, 3240-3246.
21. Scudiero DA, Shoemaker RH, Paull KD *et al.* Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. *Cancer Res* 1988, **48**, 4827-4833.
22. Sayers TJ, Wiltzout TA, McCormick K, Husted C, Wiltzout RH. Antitumour effects of α -interferon and γ -interferon on a murine renal cancer (Renca) *in vitro* and *in vivo*. *Cancer Res* 1990, **50**, 5414-5420.
23. Sciller JH, Groves DS, Schmid SM, Willson JKV, Cummings KB, Borden EC. Synergistic antiproliferative effects of human recombinant α 54- or β ser-interferon with γ -interferon on human cell lines of various histogenesis. *Cancer Res* 1986, **46**, 483-488.
24. Ahlgren JD. Colorectal cancer chemotherapy. In Ahlgren JD, Macdonald JS, eds. *Gastrointestinal Oncology*. Philadelphia, J.B. Lippincott Company, 1992, 339-357.
25. Taylor CW, Lui R, Fanta P, Salomon SE. Effects of suramin on *in vitro* growth of fresh human tumors. *J Natl Cancer Inst* 1992, **84**, 489-494.
26. Clark J, Chu M, Calabresi P. Growth inhibition of colon cancer cells by genistein and suramin. *Proc Am Ass Cancer Res* 1989, **30**, 557.
27. Olivier S, Formento P, Fischel JL, Etienne MC, Milano G. Epidermal growth factor receptor expression and suramin citotoxicity *in vitro*. *Eur J Cancer* 1990, **26**, 867-871.
28. Fantini J, Rognoni JB, Roccabianca M, Pommier G, Marvaldi J. Suramin inhibits cell growth and glycolytic activity and triggers differentiation of human colic adenocarcinoma cell clone HT29-D4. *J Biol Chem* 1989, **17**, 10282-10286.
29. Myers C, Cooper M, Stein C, *et al.* Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer. *J Clin Oncol* 1992, **10**, 881-889.
30. Bowden C, Clark J, Marsella J, Calabresi P. Inhibitory effects of suramin, herbimycin A, and IFN-alpha, on human melanoma *in vitro* (meeting abstract). *Clin Res* 1990, **38**, 776A.
31. Budillon A, Tagliaferri P, Caraglia M, *et al.* Upregulation of epidermal growth factor receptor induced by alpha-interferon in human epidermoid cancer cells. *Cancer Res* 1991, **51**, 1294-1299.
32. Ono K, Nakane H, Fukushima M. Differential inhibition of various deoxyribonucleic and ribonucleic acid polymerases by suramin. *Eur J Biochem* 1988, **172**, 149-153.
33. Larsen AK, Levievre S, Bojanowski K, Couprie J, Markovits J, Jacquemin-Sablon. Suramin is an inhibitor of DNA topoisomerase II (meeting abstract). *Proc Am Assoc Cancer Res* 1991, **32**, A2008.

Acknowledgements—The work has been partially supported by a grant from Associazione Italiana Ricerca Cancro. The authors would like to thank Dr J.W. Clark (Brown University, Providence-RI, USA) for his helpful suggestions.

European Journal of Cancer Vol. 30A, No. 4, pp. 520-525, 1994
 Copyright © 1994 Elsevier Science Ltd
 Printed in Great Britain. All rights reserved
 0959-8049/94 \$7.00+0.00

0959-8049(93)E0102-V

Modulation of Cisplatin Cytotoxicity by Human Recombinant Interferon- γ in Human Ovarian Cancer Cell Lines

A. Nehme, A.M. Julia, S. Jozan, C. Chevreau, R. Bugat and P. Canal

Cytotoxic interactions between recombinant human interferon- γ (IFN γ) and cisplatin have been studied in six ovarian cell lines (IGROV1, NIHOCAR3, SKOV3, OVCCR1, 2008 and its cisplatin resident variant 2008/C13*). Studies were performed using a cell survival assay. Results were assessed using median effect analysis. Synergy between these two drugs was observed in cell lines sensitive to IFN γ , whatever their relative sensitivity or resistance to cisplatin, suggesting that IFN γ enhances the cytotoxic activity of cisplatin. This interaction is not due to an increase in platinum accumulation in cells. This combination of drugs should be evaluated against human ovarian cancer xenografts in nude mice before its use in clinical practice.

Key words: interferon- γ , cisplatin, interactions, median effect analysis, human ovarian cancer cell lines, combination index, synergism

Eur J Cancer, Vol. 30A, No. 4, pp. 520-525, 1994

INTRODUCTION

THE INCORPORATION of biological agents, often termed biological response modifiers (BRM) into combination regimens with standard chemotherapeutic agents offers an important challenge to medical oncologists, since the assumptions for their use are

likely to differ from those for chemotherapeutic agents. The interferons (IFN) are a family of naturally occurring glycoproteins which share antiviral, immunomodulatory and antiproliferative effects. Interferon- γ (IFN γ) has a somewhat more potent antitumour activity than the other classes of interferons

(α, β) [1]. This IFN affects the proliferation of ovarian carcinoma cell lines *in vitro* and the growth of human ovarian xenografts *in vivo* [2, 3]. Although only a few clinical trials have been conducted in ovarian cancer with IFN γ , they have demonstrated the efficiency of this drug [4, 5]. Activity has been shown when this BRM was administered intraperitoneally (i.p.) [6, 7]. Such a result might be explained by the fact that IFN γ might exert its immunomodulatory activity via immunocompetent cells present in the peritoneum [8].

Cisplatin is the cornerstone of the chemotherapeutic treatment of ovarian cancer. Its pharmacological advantage, shown after i.p. administration, allows the application of the concept of dose intensity [9]. Unfortunately, the clinical utility of cisplatin has been limited by the frequent development of resistance and/or limiting toxicities [10]. Research studies have been developed with the aim of potentiating cisplatin activity. Few have investigated the interactions of IFN γ and cisplatin *in vitro*: Saito and colleagues [11] demonstrated additive effects on the BG-1 human ovarian cancer cell line, but the concentrations of IFN γ were not within the range of levels that can be attained in plasma or peritoneal fluid. More recently, Marth and colleagues [12] showed a synergistic effect for A2780 and HTB-77 ovarian cell lines, and only an additive effect for the OVCAR-3 ovarian cell line.

In this study, we have evaluated the cytotoxic activity of human recombinant IFN γ in combination with cisplatin on a panel of six different human ovarian carcinoma cell lines corresponding to the main histological types of ovarian cancer: serous and endometrioid. The interactions, determined by median effect analysis, were studied on two variants of the same cell line different in their sensitivity to cisplatin.

MATERIALS AND METHODS

Cell lines and cell culture

Six human ovarian carcinoma cell lines were used in this study: SKOV3 and NIHOCAR-3 were obtained from the American Type Culture Collection (Rockville, U.S.A.). IGROV1 was a gift from Dr J. Bénard [13]. 2008 [14] and its 10-fold cisplatin-resistant (2008/C13*) subline [15, 16] were generously provided by Dr Stephen B. Howell. OVCCR1 was established in our laboratory from the peritoneal fluid of a patient suffering from ovarian cancer [17].

Cell lines were maintained in RPMI 1640 medium (Gibco, France) supplemented with 5% (v/v) fetal bovine serum (FBS) (Seromed, France), insulin (5 μ g/ml) and epidermal growth factor (EGF, 2 ng/ml) (Boehringer-Mannheim, Germany), and kept at 37°C in a humidified atmosphere containing 5% CO₂.

Drugs and chemicals

Cisplatin (powder 10 mg) was obtained from Roger Bellon Laboratories (Neuilly-sur-Seine, France). The stock solution was stored at 4°C, and working solutions were prepared immediately before use by dilutions in the culture medium. IFN γ was derived from human recombinant DNA, and obtained from the E. Boehringer Institute (Vienna, Austria). The preparation was essentially pure and had a specific activity of 2×10^7 U/mg of

protein. The stock solution was stored at -20°C, and the working solution was prepared before use by dilutions in the culture medium.

Cell survival assay

Cells growing in log phase were trypsinised, dispersed and plated onto plastic tissue culture dishes in triplicate at a density of 50 000 cells/dish. The cells were allowed to attach for 24 h (SKOV3, IGROV1, 2008 and 2008/C13*) or 48 h (OVCCR1 and NIHOCAR-3), then the medium was changed to one containing the appropriate concentrations of IFN γ , cisplatin or different combinations of these substances.

For all experiments, the exposure time was 1 h for cisplatin, whereas the BRM was present in the culture medium for the whole culture period. After three doubling times, the cells were collected and numerated using an electronic particle counter (Coulter Electronics, Margency, France). The results were expressed as percentages of survival cells, and the concentrations of cisplatin or IFN γ which caused 20, 50 or 80% growth inhibition with respect to controls (IC₂₀, IC₅₀ and IC₈₀) were determined.

Median effect analysis

Median effect analysis was used to determine the interactions between cisplatin and IFN γ [18]. Combination index (CBI) was determined from a cell survival assay at increasing levels of cell kill. CBI values less than or greater than 1 indicate synergy and antagonism, respectively, whereas a CBI value of 1 indicates additivity of the drugs. Cisplatin and IFN γ were combined in a fixed ratio corresponding to the ratio of the individual IC₅₀ (w/w) for each cell line (IFN γ /cisplatin): 1/1600 for OVCCR1, 1/128 for NIHOCAR-3, 1/1000 for 2008, 1/2250 for 2008/C13*, 1/200 for SKOV3. For IGROV1, the ratio was fixed to 1/800. The cytotoxicity was compared to the cytotoxicity of each drug alone in every experiment, and each experiment was performed three times using triplicate cultures for each data point.

Platinum accumulation

Cells growing in log phase in Falcon cell culture flasks (Nunclon, France) (175 cm²) were harvested and plated onto cell culture flasks (75 cm²) at a density of 6×10^6 cells/flask. Twenty-four or forty-eight hours later, the cells were treated with a fixed concentration of cisplatin for 1 h with or without IFN γ . The cells were washed three times with phosphate buffered saline (PBS), trypsinised, counted and centrifuged at 4°C for 15 min at 1000 rpm. The supernatant was discarded and the cellular pellet was recovered with 5 ml of PBS and reconstituted with 300 μ l H₂O. The cells were disrupted by sonication (6–10 s) and 60 μ l of this final solution was used for platinum measurement by flameless atomic absorption spectrophotometry.

RESULTS

Cytotoxicity of cisplatin and IFN γ *in vitro*

The cytotoxicity was assayed against six ovarian cell lines in culture. The IC₂₀, IC₅₀ and IC₈₀ for cisplatin and IFN γ are summarised in Table 1. The IC₅₀ of cisplatin differed from one cell line to another, ranging from 0.4 to 9 μ g/ml; in particular, the IC₅₀ of cell line 2008 and its cisplatin-resistant subline (2008/C13*) were 1 and 9 μ g/ml, respectively.

A similar heterogeneity in cytotoxic response was noticed with IFN γ : four cell lines (OVCCR1, NIHOCAR3, 2008 and its

Correspondence to P. Canal.

The authors are at the Groupe de Pharmacologie Clinique et Expérimentale des Médicaments Anticancéreux Centre Claudius Regaud, 20-24 rue du Pont Saint-Pierre, 31052 Toulouse Cedex; A. Nehme, S. Jozan and R. Bugat are also at the Université Paul Sabatier, 31062 Toulouse Cedex, France.

Revised 2 Nov. 1993; accepted 9 Nov. 1993.

Table 1. Relative cytotoxicity of cisplatin (1-h exposure) and $IFN\gamma$ (continuous exposure) on six human ovarian cancer cell lines evaluated by the cell survival assay

	Cisplatin (μ g/ml)			$IFN\gamma$ (U/ml)		
	IC_{20}	IC_{50}	IC_{80}	IC_{20}	IC_{50}	IC_{80}
OVCCR 1	0.35 \pm 0.05	0.80 \pm 0.10	1.75 \pm 0.25	5 \pm 3	10 \pm 1.5	17.5 \pm 2.5
NIHOVCAR 3	0.15 \pm 0.05	0.48 \pm 0.08	0.75 \pm 0.09	12.5 \pm 2.5	75 \pm 12	225 \pm 25
IGROV 1	0.07 \pm 0.02	0.40 \pm 0.09	1.25 \pm 0.25	N.E.	N.E.	N.E.
SKOV 3	1.56 \pm 0.10	3.00 \pm 0.18	6.51 \pm 0.50	200 \pm 20	300 \pm 25	N.E.
2008	0.40 \pm 0.10	1.00 \pm 0.18	2.00 \pm 0.21	7 \pm 2	20 \pm 3.5	61 \pm 8
2008/C13*	2.00 \pm 0.15	9.00 \pm 0.37	21.9 \pm 0.72	10 \pm 1	80 \pm 17	620 \pm 10

Values represent the average of three independent determinations carried out in triplicate. Means \pm S.D. are given. IC_{20} = 20% inhibitory concentration. IC_{50} = 50% inhibitory concentration. IC_{80} = 80% inhibitory concentration. N.E., not evaluable.

subline C13*) might be considered sensitive ($IC_{50} < 100$ U/ml), two others do not respond to physiological concentrations, and for IGROV1 the IC_{50} could not be determined.

Effect of cisplatin in combination with $IFN\gamma$

The nature of interactions between cisplatin and $IFN\gamma$ was investigated using a schedule of drug exposures that mimicked the clinical conditions upon which this study was based. In the clinical situation, the protocols are started with a short infusion of cisplatin and a repeated weekly administration of $IFN\gamma$. To reflect this schedule, the ovarian cell lines were treated for 1 h with cisplatin and exposed continuously to $IFN\gamma$.

The CbI values determined by using the technique of median effect analysis for obtaining 20, 50 and 80% inhibition of growth in the different cell lines are summarised in Table 2. For OVCCR1 and NIHOVCAR3 (Figure 1), the CbI₅₀ values were 0.81 ± 0.06 and 0.62 ± 0.11 , respectively, indicating that, for these two cell lines, the combined amount of the two drugs necessary to kill 50% cells was only 0.81 and 0.62 times as much as would be required if they demonstrated purely additive behaviour. Figure 2 shows the average plot of CbI as a function of fraction affected derived from three experiments with IGROV1 and SKOV3, and it indicates that there was a moderate

degree of antagonism, particularly at the lower level of cell kills, for IGROV1 and at higher levels for SKOV3.

The nature of interactions was also investigated using two variants of the same cell line differing in their sensitivities to cisplatin. The CbI₈₀ values were 0.74 ± 0.09 for cell line 2008 and 0.36 ± 0.08 for the platinum resistant subline 2008/C13* (Figure 3) ($P < 0.05$).

Cytotoxic activities of the two compounds, separately or in combination, on the different cell lines are summarised in Table 3, which suggests that synergy between cisplatin and $IFN\gamma$ is independent of the cell line doubling times, but may be crucially dependent on the $IFN\gamma$ sensitivity.

Platinum accumulation

Platinum uptake has been tested only in cell lines in which synergism has been noted. The same fixed ratio of concentrations of the two drugs used for median effect analysis was used. Cells

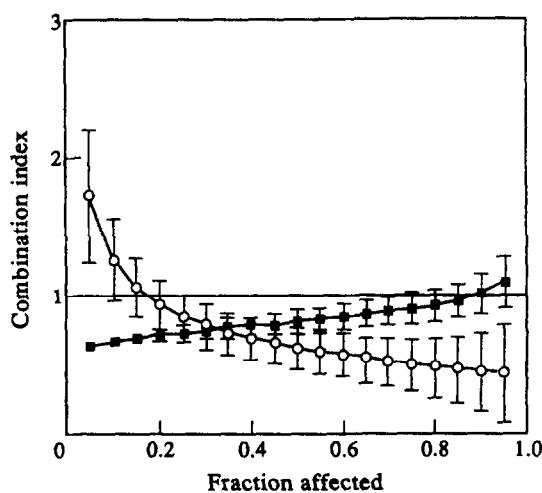
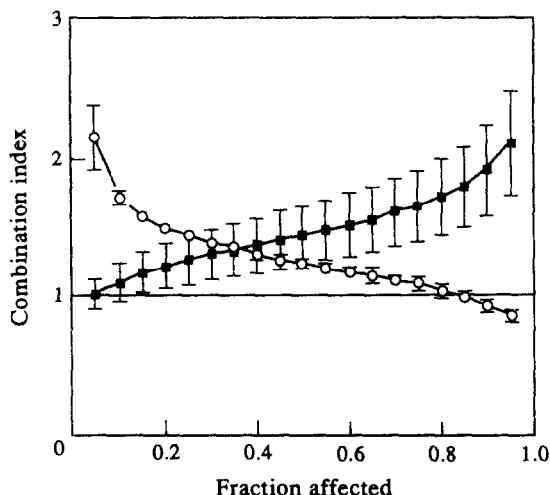



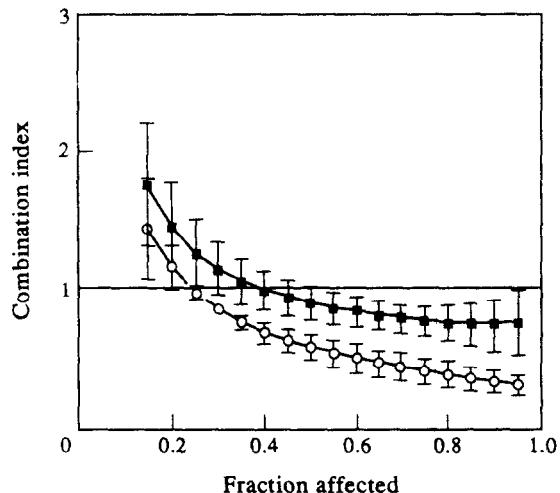
Figure 1. Combination index plot as a function of fraction affected by the interaction between cisplatin and $IFN\gamma$ on OVCCR1 and NIHOVCAR3 ovarian cell lines. ■ Effect of cisplatin and $IFN\gamma$ on the OVCCR1 ovarian cell line at a concentration ratio of 1/1600. ○ Effect of cisplatin and $IFN\gamma$ on the NIHOVCAR3 ovarian cell line at a concentration ratio of 1/128. Each curve represents the average of three separate experiments using triplicate cultures for each data point. Mean \pm S.D. are given. CbI < 1 indicates synergy.

Table 2. Values of combination index for the interaction between cisplatin and $IFN\gamma$ on six ovarian cancer cell lines

	CbI 20%	CbI 50%	CbI 80%
OVCCR1	0.72 \pm 0.04	0.81 \pm 0.06	0.93 \pm 0.09
NIHOVCAR3	0.93 \pm 0.14	0.62 \pm 0.11	0.49 \pm 0.16
IGROV1	1.97 \pm 0.37	1.30 \pm 0.05	1.06 \pm 0.43
SKOV3	1.22 \pm 0.11	1.45 \pm 0.15	1.71 \pm 0.19
2008	1.20 \pm 0.07	0.82 \pm 0.05	0.74 \pm 0.09
2008/C13*	1.18 \pm 0.11	0.56 \pm 0.08	0.36 \pm 0.08

CbI 20% = combination index indicating the combined amount of the two drugs necessary to kill 20% of cells. CbI 50% = combination index indicating the combined amount of the two drugs necessary to kill 50% of cells. CbI 80% = combination index indicating the combined amount of the two drugs necessary to kill 80% of cells. Values represent the average of three independent determinations using triplicate cultures for each data point. Means \pm S.D. are given. CbI < 1 indicates synergy.

Figure 2. Combination index plot as a function of fraction affected by the interaction between cisplatin and IFN γ on SKOV3 and IGROV1 ovarian cell lines. ■ Effect of cisplatin and IFN γ on the SKOV3 ovarian cancer cell line at a concentration ratio of 1/200. ○ Effect of cisplatin and IFN γ on the IGROV1 ovarian cancer cell line at a concentration ratio of 1/800. Each curve represents the average of three separate experiments using triplicate culture for each data point. Means \pm S.D. are given. CbI < 1 indicates synergy.


were incubated with cisplatin IC₅₀ in the presence or absence of the corresponding concentrations of IFN γ . Another concentration corresponding to the cisplatin IC₈₀ for NIHOCAR3, 2008 and 2008/C13* and to the cisplatin IC₂₀ for OVCCR1 was also tested because of the shape of the interaction curves.

As shown in Table 4, no major difference was observed in terms of platinum uptake in any cell line, whatever the treatment and the concentration tested.

DISCUSSION

Drugs that enhance the sensitivity of tumour cells to cisplatin are of particular interest both because of the possibility of using them to potentiate the antitumoural activity of cisplatin in patients, and because they provide a pharmacological tool with which to dissect the complex mechanisms by which cells protect themselves against the cytotoxic agent.

This study demonstrates marked cytotoxic synergy between IFN γ and cisplatin in four out of six human ovarian cancer cell lines, using a formal analytical technique (median effect analysis)

Figure 3. Combination index plot as a function of fraction affected by the interaction between cisplatin and IFN γ on 2008 and 2008/C13* ovarian cell lines. ■ Effect of cisplatin and IFN γ on the 2008 ovarian cancer cell line at a concentration ratio of 1/1000. ○ Effect of cisplatin and IFN γ on the 2008/C13* ovarian cancer cell line at a concentration ratio of 1/2250. Each curve represents the average of three separate experiments using triplicate cultures for each data point. Means \pm S.D. are given. CbI < 1 indicates synergy.

to elucidate the nature of interactions. The synergistic interaction was observed at all levels of effects over the first two logs of cell kills and, in particular, was observed at low concentrations of both cisplatin (1 μ g/ml) and IFN γ (100 U/ml), which are well within the range that can be attained in human plasma or peritoneal fluid using standard dosing regimens [7, 9]. Interestingly, synergy between cisplatin and IFN γ was observed using the subline 2008/C13*, that was 10-fold more resistant to the cytotoxic effect of cisplatin. Measurement of *in vitro* sensitivity in ovarian carcinoma tumour samples or cell lines obtained before or after treatment of patients with cisplatin indicated that the level of resistance that emerges *in vivo* is quite modest, in the range of 1.5–3.0-fold [19, 20]. Increased drug exposure by i.p. administration of platinum derivatives or modulation of cisplatin activity, by IFN γ for instance, might overcome resistance, and produce prolonged survival in patients with some types of ovarian carcinoma [9]. In contrast, no synergism was observed using the two cell lines which are not sensitive to IFN γ : IGROV1

Table 3. Comparative data of the different ovarian cell lines concerning their biological characteristics, their relative sensitivity to cisplatin, IFN γ and the consequence on the drug combination

Cell line	Histological type	Doubling time (h)	Cisplatin sensitivity*	IFN γ sensitivity†	Synergism‡
OVCCR1	Serous	72	++	+++	+
NIHOVCAR3	Serous	48	+++	++	++
SKOV3	Endometrioid	24	+	—	—
IGROV1	Endometrioid	24	+++	—	—
2008	Serous	30	++	+++	+
2008/C13*	Serous	24	—	++	+++

*Cisplatin sensitivity was assessed as: — IC₅₀ > 5 μ g/ml; + 1 < IC₅₀ < 5 μ g/ml; ++ 0.5 < IC₅₀ < 1 μ g/ml; +++ IC₅₀ < 0.5 μ g/ml. †IFN γ sensitivity was assessed as: — IC₅₀ > 250 U/ml; + 100 U/ml < IC₅₀ < 250 U/ml; ++ 50 U/ml < IC₅₀ < 100 U/ml; +++ IC₅₀ < 50 U/ml. ‡Synergism was assessed as: — CbI 50% > 1; + 0.8 < CbI < 1; ++ 0.6 < CbI < 0.8; +++ CbI < 0.6.

Table 4. Platinum accumulation in four ovarian cancer cell lines treated with the cisplatin with or without cotreatment with IFN γ . Data only shown for cell lines in which a synergism was observed

	Cisplatin alone (ng platinum/10 ⁶ cells)			Cisplatin + IFN γ (ng platinum/10 ⁶ cells)		
	IC ₂₀	IC ₅₀	IC ₈₀	IC ₂₀	IC ₅₀	IC ₈₀
OVCCR1	6.1 ± 0.5	14.4 ± 1.5		8.3 ± 1.5	16.6 ± 2.1	
NIHOVCAR3		5.3 ± 0.3	9.1 ± 1.5		4.9 ± 0.6	7.9 ± 1.2
2008		4.1 ± 0.5	8.2 ± 1.5		4.2 ± 0.8	7.5 ± 1.5
2008/C13*		14.1 ± 1.7	20.1 ± 2.1		14.3 ± 1.2	19.8 ± 1.6

Cells were exposed for 1 h to cisplatin IC₂₀, IC₅₀ or IC₈₀ in the presence or absence of IFN γ concentrations defined by the fixed ratio of concentrations used for median effect analysis. Values are the means of three independent determinations. Mean ± S.D. are given.

and SKOV3. These two observations (synergism in the cisplatin-resistant cell line and no synergism in the IFN γ -insensitive cell line) support the hypothesis that it is IFN γ which enhances the activity of cisplatin (Table 3).

Interactions between cytotoxic drugs and IFN γ have been previously described. Synergism or additivity have been observed between IFN γ and 5-fluorouracil, doxorubicin, vincristine or vinblastine in different types of human cancer cell lines [21]. Synergism or additivity amplification of the antiproliferative activity of cisplatin and IFN γ have been demonstrated by Marth and colleagues [12] in two out of three cell lines tested, but the mechanism by which IFN γ enhances sensitivity to cisplatin remains undefined. Different hypotheses have been proposed to explain the potential modulation of cisplatin activity or resistance, recently reviewed by Timmer-Boscha and colleagues [22]. Firstly, impaired cisplatin uptake is a common characteristic of cells selected for cisplatin resistance, but we have demonstrated that IFN γ does not produce an increase in cisplatin uptake. Such a mechanism has been described for some drugs such as forskoline [23] or dipyridamole [24], which increase cisplatin cytotoxicity in human ovarian cell lines, sensitive or resistant to cisplatin, by increasing cellular cyclic adenosine monophosphate (c-AMP) levels. Secondly, cellular cisplatin sensitivity is known to be influenced by many other factors (increased glutathione content or enhancement of DNA repair synthesis [25]) which might be modulated by IFN γ . Finally, there are several lines of evidence suggesting that oncogenes might play a role in cisplatin cytotoxicity, even if there is not yet a biochemical explanation for the effects of oncogenes on cisplatin cytotoxicity [26]. Currently, it is well known that IFN γ induces the expression of more than 20 genes and downregulates many others [27, 28]. However, potential interactions at this molecular level seem to be still speculative.

Our findings indicate that, *in vitro*, the maximum potentiation of cisplatin cytotoxicity occurs at concentrations of IFN γ clinically achievable. Both these two agents have exhibited antitumour activity against human ovarian cancer xenografts growing as ascites or bulky solid tumours in nude mice, when administered i.p. [3, 29]. Using these conditions, we plan to study the *in vivo* combination of cisplatin and IFN γ administered i.p. against human ovarian xenografts which have been established from the cell lines in which we have demonstrated *in vitro* positive interactions. If these animal experiments confirm the *in vitro* data, they should constitute the ultimate step before the introduction of cisplatin-IFN γ combinations in clinical practice.

- Blalock JE, Georgiades JA, Langford MP, Johnson HM. Purified human immune interferon has more potent anticellular activity than fibroblast or leukocyte interferon. *Cell Immunol* 1980, **49**, 390–394.
- Saito T, Berens ME, Welander CE. Direct and indirect effects of human recombinant γ -interferon on tumor cells in a clonogenic assay. *Cancer Res* 1986, **46**, 1142–1147.
- Malik STA, Knowles RG, East N, Lando D, Stamp G, Balkwill FR. Antitumor activity of γ -interferon in ascitic and solid tumor models of human ovarian cancer. *Cancer Res* 1991, **51**, 6643–6649.
- Allavena P, Pecicatori F, Maggioni D, *et al.* Intraperitoneal recombinant γ interferon in patient with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effector and of major histocompatibility antigen expression on tumor cells. *Cancer Res* 1990, **50**, 7318–1323.
- Welander CE, Homesley HD, Reich SD, Levin EA. A phase II study of the efficacy of recombinant interferon γ in relapsing ovarian adenocarcinoma. *Am J Clin Oncol* 1988, **11**, 465–469.
- Pujade Lorraine E, Guastella JP, Colombo N, *et al.* Intraperitoneal recombinant human interferon gamma in residual ovarian cancer: efficacy is independent of previous response to chemotherapy. *Proc Am Soc Clin Oncol* 1991, **10**, 195.
- D'Acquisto R, Markman M, Hakes T, Rubin S, Hoskins W, Lewis JL Jr. A phase I trial of intraperitoneal recombinant gamma-interferon in advanced ovarian carcinoma. *J Clin Oncol* 1988, **6**, 689–695.
- Péri G, Polentarutti N, Sessa C, Mangioni C, Montovani A. Tumoricidal activity of macrophages isolated from human ascitic and solid ovarian carcinoma: augmentation by interferon, lymphokines and endotoxin. *Int J Cancer* 1981, **28**, 143–152.
- Howell SB, Zimm S, Markman M, Abramson IS, Cleary S, Lucas WE, Weiss RJ. Long-term survival of advanced refractory ovarian carcinoma patients with small-disease treated with intraperitoneal chemotherapy. *J Clin Oncol* 1987, **5**, 1607–1612.
- Andrews PA, Howell SB. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. *Cancer Cells* 1990, **2**, 35–43.
- Saito T, Berens ME, Welander CE. Interferon- γ and cytotoxic agents studied in combination using a soft agarose human tumor clonogenic assay. *Cancer Chemother Pharmacol* 1987, **19**, 233–239.
- Marth C, Helmberg M, Mayer I, Futh LC, Daxenbichler G, Dapunt O. Effects of biological response modifiers on ovarian carcinoma cell lines. *Anticancer Res* 1989, **9**, 461–467.
- Bénard J, Da Silva J, De Blois MC, *et al.* Characterization of human ovarian adenocarcinoma line IGROV1 in tissue culture and nude mice. *Cancer Res* 1985, **45**, 4970–4979.
- Disaia PJ, Sinkovics JG, Rutledge FN, Smith JP. Cell-mediated immunity to human malignant cells. *Am J Obstet Gynecol* 1972, **114**, 979–989.
- Andrews P, Murphy MP, Howell SB. Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion. *Cancer Res* 1985, **45**, 6250–6253.
- Andrews P, Mann SC, Huynh HH, Albright KD. Role of the Na⁺, K⁺-adenosine triphosphate in the accumulation of cis-

diamminedichloroplatinum(II) in human ovarian carcinoma cells. *Cancer Res* 1991, **51**, 3677-3681.

17. Jozan S, Roché H, Cheutin F, Carton M, Salles B. New human ovarian cell line OVCCR1/st in serum-free medium. *In Vitro Cell Dev Biol* 1992, **28**, 687-689.
18. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. *Adv Enzyme Regul* 1984, **22**, 27-55.
19. Wilson AP, Ford CH, Newman CE, Howell SB. Cis-platinum and ovarian cancer. *In vitro* chemosensitivity of cultured tumour cells from patients receiving high dose cis-platinum as a first line treatment. *Br J Cancer* 1987, **56**, 763-777.
20. Wolf CR, Hayward IP, Lawrie SS, et al. Cellular heterogeneity and drug resistance in two ovarian adenocarcinoma cell lines derived from a single patient. *Int J Cancer* 1987, **39**, 695-702.
21. Walder S, Schwartz EL. Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. *Cancer Res* 1990, **50**, 3473-3486.
22. Timmer-Boscha H, Mulder NH, de Vries EGE. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. *Br J Cancer* 1992, **66**, 227-238.
23. Mann SC, Andrews PA, Howell SB. Modulation of cis-diamminedichloroplatinum(II) accumulation and sensitivity by for-
- skolin and 3-isobutyl-1-methylxanthine in sensitive and resistant human ovarian carcinoma cells. *Int J Cancer* 1991, **48**, 866-872.
24. Jekunen A, Vick J, Sanga R, Chan TCK, Howell SB. Synergism between dipyridamole and cisplatin in human ovarian carcinoma cells *in vitro*. *Cancer Res*, 1992, **52**, 3566-3571.
25. Meijer C, Mulder NH, de Vries EGE. The role of detoxifying systems in resistance of tumor cells to cisplatin and adriamycin. *Cancer Treat Rev* 1990, **17**, 389-407.
26. Scanlon KJ, Kashani-Sabet M, Miyachi H, Sowers LC, Rossi J. Molecular basis of cisplatin resistance in human carcinomas: model systems and patients. *Anticancer Res* 1989, **9**, 1301-1312.
27. Revel M, Chebath J. Interferon-activated genes. *TIBS* 1986, **11**, 168-170.
28. Marth C, Muller-Holzner E, Greiter E, et al. γ -Interferon reduces expression of the protooncogene c-erbB-2 in human ovarian carcinoma cells. *Cancer Res* 1990, **50**, 7037-7041.
29. Boven E. Biology of human ovarian cancer xenografts. In Winograd B, Peckham MJ, Pinedo HM, eds. *Human Tumour Xenografts in Cancer Drug Development*. Berlin, Springer Verlag, 1987, 33-35.

Acknowledgements—This work is supported by a grant of the Fédération Nationale des Centres de Lutte Contre le Cancer and Les Comités Départementaux (Région Midi-Pyrénées) de la Ligue Nationale Contre le Cancer.

European Journal of Cancer Vol. 30A, No. 4, pp. 525-527, 1994
Copyright © 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0959-8049/94 \$7.00 + 0.00

Pergamon

0959-8049(93)E0096-9

H7, an Inhibitor of Protein Kinase C, Inhibits Tumour Cell Division in Mice Bearing Ascitic Ehrlich's Carcinoma

V. Felipo, M.-D. Miñana, H. Cabedo, F. Perez-Minguez, A. Llombart-Bosch and S. Grisolía

We have previously shown that H7, an inhibitor of protein kinase C (PKC), inhibits proliferation of several cell lines as well as of primary cultured cells from human tumours. The aim of this work was to assess whether H7 is able to prevent the division of tumour cells in mice bearing Ehrlich's ascitic carcinoma. The LD₅₀ of H7 injected intravenously was 61 mg/kg and 94 mg/kg for starved and fed mice, respectively. Acute intraperitoneal injection of 100 mg/kg of H7 decreased the number of mitoses in tumoral cells from ascitic fluid of mice bearing the carcinoma. The reduction was maximal (approximately 50%) after 90 min and then the number of mitosis rose due to a decrease in H7. Continuous delivery of H7 from miniosmotic pumps implanted on the backs of the mice reduced the number of mitoses by approximately 65%, and the effect was maintained for approximately 24 h. The effect cannot be maintained for longer because H7 is unstable at body temperature. These results indicate that inhibition of PKC can block division of tumour cells in carcinoma-bearing animals, and support the idea that inhibitors of PKC could be useful for the clinical control of proliferation of certain tumours.

Key words: protein kinase C, H7, Ehrlich's carcinoma, cell division, tumour proliferation, ascites
Eur J Cancer, Vol. 30A, No. 4, pp. 525-527, 1994

INTRODUCTION

PROTEIN KINASE C (PKC) plays an important role in transmembrane signal transduction and in the control of many cellular responses, including cell proliferation and differentiation, gene expression and tumour promotion [1]. The involvement of PKC in the control of cell growth was initially suggested by the finding that PKC constitutes the receptor for the mitogenic phorbol esters, which are tumour promoters [2]. The role of PKC in the

regulation of cellular growth is also supported by the fact that certain growth factors mediate their mitogenic effects in part through a cascade of phosphatidyl inositol hydrolysis and activation of PKC [3, 4]. It has also been shown that PKC activity is overexpressed in aflatoxin-transformed cells [5]. Moreover, PKC activity is increased in human tumour carcinoma and adenoma [6], and the expression of different isoforms of PKC is altered in human astrocytomas/brain tumours, melanomas and